KEPLER'S LAWS

BASICS

- 3 laws to describe the motion of a planet around the Sun.
- It can be applied for all the satellites.
- Empirical laws: the theory was developed later by Newton.
- 1st law: the orbits of the planets are ellipses, with the Sun at one focus of the ellipse

• 2nd law: the line joining the planet to the Sun sweeps out equal areas in equal times as the planet travels around the ellipse

• 3rd law: The ratio of the squares of the revolutionary periods for two planets is equal to the ratio of the cubes of their semimajor axes

$$\frac{T_1^2}{a_1^3} = \frac{T_2^2}{a_2^3} = C^{st}$$

- When the orbit is circular, the semimajor axis becomes the radius.
- The 2nd law shows that the speed of a planet (distance travelled divided by the time needed to travel this distance) is not a constant: it will increase when you get closer to the Sun.
- The constant in the 3rd law depends on the mass of the Sun. If you apply this law to a planet with its satellites, the constant will depends on the mass of the planet.

• A classic mistake linked to the 1st law: to think that we are in summer when we are closer to the Sun. It's the opposite because it's mainly linked to the Earth's inclination

ADVANCED

 For an ellipse there are two points called foci (singular: focus) such that the sum of the distances to the foci from any point on the ellipse is a constant. a + b = constant.

That defines the ellipse in terms of the distances a and b.

The long axis of the ellipse is called the *major axis*, while the short axis is called the *minor axis*. Half of the major axis is the *semimajor axis*. The length of a semimajor axis is often called the size of the ellipse. It can be shown that <u>the average separation of a planet from the Sun as it goes around its elliptical orbit is equal to the length of the semimajor axis.</u> Thus, by the "radius" of a planet's orbit we usually mean the length of the semimajor axis.

LINKS

- Astronomy:
 - Old civilizations already started to study the Universe
 - Galileo's telescope allowed better observations (Moon's surface, Jupiter's satellites, ...)
 - Empirical laws with Kepler
 - General laws with Newton (3 laws and gravity)

- Other tools now: we analyze the electromagnetic waves that we receive from the Universe (spectrum of absorption to know the chemical elements in a star atmosphere, Doppler effect with the blue shift/red shift to know if a galaxy or a star is getting closer or is getting further, ...)
- You can explain the spectra of emission an absorption
- You can explain the Doppler effect with a drawing and say that it helped to prove the Big Bang theory
- Evolution of science: mechanic
 - Aristotle thought that a force is necessary to have a motion
 - Galileo thought that a force is necessary to change a motion and proposed the law of inertia
 - Kepler observed the motions of planets and satellites and proposed 3 empirical laws
 - Newton developed Galileo's ideas and explained the Kepler's laws
 - Einstein and his theory of special relativity (twin paradox)
- Evolution of science: structure of the matter
 - The Greeks with a philosophical approach: there must be an elementary component of the matter that **you can't divide** (literally "atomos")
 - Thomson with the model of the plum pudding: negatively charged particles i.e. electrons embedded or suspended in a sphere of positive charge (electrons presented as plums inside the bowl of pudding)
 - Rutherford's experiment: alpha particles sent through a gold foil showed that a big part of the atoms was void. There should be a positive nucleus at the center and electrons turning around (just like a planet with satellites)
 - New models with electrons represented as a kind of cloud around the nucleus
- Evolution of science: link with the global warming controversy