Chapitre 1 : Vision et images

Connaissances et compétences :

- Décrire le modèle de l'œil réduit et le mettre en correspondance avec l'œil réel.
- Déterminer graphiquement la position, la grandeur et le sens de l'image d'un objet plan donnée par une lentille convergente.
- Utiliser les relations de conjugaison et de grandissement d'une lentille mince convergente.
- Modéliser l'accommodation du cristallin.
- Comparer les fonctionnements optiques de l'œil et de l'appareil photographique.

I. Modélisation de l'œil et d'un appareil photographique

⇒ Voir Activité 1 p14

Fonction	Elément de l'œil	Elément de l'œil réduit	Elément de l'appareil photographique
Régulation de la quantité de lumière	Iris	Diaphragme	Diaphragme
Formation de l'image	Cristallin	Lentille convergente	Objectif
Réception de l'image	Rétine	Ecran	Capteur

II. Caractéristiques d'une lentille convergente

⇒ Expérience de cours : « Rayons lumineux et lentilles convergentes »

1. Définition et représentation

Une lentille convergente est un objet transparent et homogène plus épais en son centre qu'en ses bords. Elle est représentée par :

- un segment fléché;
- son centre optique O (au centre du segment fléché) ;
- son axe optique (Δ) (droite perpendiculaire à la lentille et passant par O).

2. Distance focale

Le foyer image F' d'une lentille convergente est le point où convergent les rayons parallèles à l'axe optique.

Par définition, la distance focale f' est la distance qui sépare le centre optique O de la lentille de son foyer F':

 $f' = \overline{OF'}$

L'inverse de la distance focale est appelée vergence de la lentille, notée C et s'exprime en dipotries

L'inverse de la distance focale est appelée vergence de la lentille, notée C et s'exprime en dipotries (δ):

III. Déterminer les caractéristiques d'une image

1. Construction graphique de l'image d'un objet

⇒ Voir Activité : « Comment trouver une image ? »

Un rayon incident passant par le centre optique O de la lentille ne subit pas de déviation. Un rayon incident parallèle à l'axe (Δ) de la lentille émerge de la lentille en passant par son foyer image F'.

Un rayon incident passant par le foyer objet F émerge de la lentille parallèlement à l'axe (Δ).

2. Relations de conjugaison et de grandissement

⇒ Voir AE n°1 : « Caractéristiques d'une image et mise au point »

La position d'un objet AB et la position de son image A'B' sont liées par la relation de conjugaison :

$$\frac{1}{\overline{OA'}} - \frac{1}{\overline{OA}} = \frac{1}{f'}$$

Le rapport entre la grandeur $\overline{A'B'}$ de l'image et la grandeur \overline{AB} de l'objet est nommé grandissement γ :

$$\gamma = \frac{\overline{A'B'}}{\overline{AB}} = \frac{\overline{OA'}}{\overline{OA}}$$

IV. Comparaison des fonctionnements de l'œil et de l'appareil photo

⇒ Voir AE n°1 : « Caractéristiques d'une image et mise au point »

La profondeur de l'œil restant constante, le cristallin diminue sa **distance focale** en se *déformant* pour que l'image de l'objet vu *reste nette* sur la rétine : on parle d'accommodation.

La mise au point d'un appareil peut se faire soit en *réglant la distance* entre l'objectif et le capteur, soit en modifiant la *distance focale* de l'objectif.

Exercices: $n^{\circ}8-11-13 p24 + n^{\circ}15-17-18 p25$

Exercices web: n°20-21-22-23 p26